Showing posts with label Plastics. Show all posts
Showing posts with label Plastics. Show all posts

ATTERBERG LIMITS AND PLASTICITY BASIC INFORMATION AND TUTORIALS


Atterberg limits, named after the Swedish soil scientist A. Atterberg, are water content values at which notable changes in soil behavior occur. The liquid limit , denoted LL or wL, marks the transition between liquid and plastic behavior.

At water contents above the liquid limit the soil behaves as a viscous liquid; below the liquid limit the soil behaves as a plastic solid. The liquid limit is determined in the laboratory by partly filling a standard brass cup with wet soil and cutting a groove of a standard dimension in the soil.

The liquid limit is taken as the water content at which the groove closes a specified amount when the cup is lifted and dropped 1 cm exactly 25 times. The details of the test are given in AASHTO T 89 and ASTM D 4318-93.

The plastic limit, denoted PL or wp, is the transition between plastic and brittle behavior. It is determined in the laboratory as the water content at which a 1/8-inch diameter thread of soil begins to crumble when rolled under the palm of the hand.

Details of the liquid limit and plastic limit tests are provided by AASHTO T 90 and ASTM D 4318-93. The shrinkage limit, denoted SL or wS, is the water content below which the soil no longer reduces in volume when the water content is reduced.

Although Atterberg limits are water contents and are properly decimals or percentages, they are usually expressed as an integer percentage without a percent sign. Thus, a liquid limit of 40% is usually reported as LL = 40.

The plasticity index, denoted PI or IP, is the difference of the liquid limit and the plastic limit:

PI = LL – PL

The liquidity index, denoted LI or IL , is a measure of the natural water content (w) relative to the plastic limit and the liquid limit:

LI = Il = (W-pl)/ (LL-PL)

THERMOPLASTIC RESINS BASICS AND TUTORIALS

THERMOPLASTIC RESINS BASIC INFORMATION
What Are The Different Types Of Plastic Resins?


Materials under this heading in general can be softened by heating and hardened by cooling.

Acrylics. In the form of large transparent sheets, these are used in aircraft enclosures and building construction. Although not so hard as glass, they have perfect clarity and transparency.

Among the most resistant of the transparent plastics to sunlight and outdoor weathering, they possess an optimum combination of flexibility and sufficient rigidity with resistance to shattering. A wide variety of transparent, translucent, and opaque colors can be produced.

The sheets are readily formed to complex shapes. They are used for such applications as transparent windows, outdoor and indoor signs, parts of lighting equipment, decorative and functional automotive parts, reflectors, household-appliance parts, and similar applications. They can be used as large sheets, molded from molding powders, or cast from the liquid monomer.

Acrylonitrile-Butadiene-Styrene (ABS). This three-way copolymer provides a family of tough, hard, chemically resistant resins with many grades and varieties, depending on variations in constituents. The greatest use is for pipes and fittings, especially drain-waste-vent (DWV). Other uses include buried sewer and water lines, mine pipe, well casings, conduit, and appliance housings.

Polyethylene. In its unmodified form, this is a flexible, waxy, translucent plastic. It maintain flexibility at very low temperatures, in contrast with many other thermoplastic materials.

Polyethylene may be provided as low-density, or standard, or as high-density or linear material. High-density polyethylene has greater strength and stiffness, withstands somewhat higher temperatures, and has a more sharply defined softening temperature range.

The heat-distortion point of the low-density polyethylenes is low; these plastics are not recommended for uses above 150 F. Unlike most plastics, polyethylene is partly crystalline. It is highly inert to solvents and corrosive chemicals of all kinds at ordinary temperatures.

Usually low moisture permeability and absorption are combined with excellent electrical properties. Its density is lower than that of any other commercially available nonporous plastic.

It is widely used as a primary insulating material on wire and cable and has been used as a replacement for the lead jacket in communication cables and other cables. It is widely used also in geogrids, geonets, and geomembrane and as corrosionproof lining for tanks and other chemical equipment.

Polypropylene. This polyolefin is similar in many ways to its counterpart, polyethylene, but is generally harder, stronger, and more temperature-resistant. It finds a great many uses, among them piping, geotextiles, and geogrids, and complete water cisterns for water closets in plumbing systems.

Polycarbonate. Excellent transparency, high impact resistance, and good resistance to weathering combine to recommend this plastic for safety glazing and for general illumination and shatter-resistant fixtures. It is available in large, clear, tinted, and opaque sheets that can be formed into shells, domes, globes, and other forms. It can be processed by standard molding methods.

Polytetrafluorethylene. This is a highly crystalline liner-type polymer, unique among organic compounds in its chemical inertness and resistance to change at high and low temperatures. Its electrical properties are excellent. Its outstanding property is extreme resistance to attack by corrosive agents and solvents of all kinds.

Waxy and self-lubricating, polytetrafluoroethylene is used in buildings where resistance to extreme conditions or low friction is desired. In steam lines, for example, supporting pads of this plastic permit the lines to slide easily over the pads.

The temperatures involved have little or no effect. Other low-friction applications include, for example, bearings for girders and trusses. Mechanical properties are only moderately high, and reinforcement may be necessary to prevent creep and squeezeout under heavy loads. These fluorocarbons are difficult to wet; consequently, they are often used as parting agents, or where sticky materials must be handled.

Polyvinylfluoride. This has much of the superior inertness to chemical and weathering attack typical of the fluorocarbons. Among other uses, it is used as thin-film overlays for building boards to be exposed outdoors.

Polyvinyl Formal and Polyvinyl Butyral. Polyvinyl formal resins are principally used as a base for tough, water-resistant insulating enamel for electric wire. Polyvinyl butyral is the tough interlayer in safety glass. In its cross-linked and plasticized form, polyvinyl butyral is extensively used in coating fabrics for raincoats, upholstery, and other heavy-duty moisture-resistant applications.

Vinyl Chloride Polymers and Copolymers. Polyvinyl chloride is naturally hard and rigid but can be plasticized to any required degree of flexibility as in raincoats and shower curtains. Copolymers, including vinyl chloride plus vinyl acetate, are naturally flexible without plasticizers.

Nonrigid vinyl plastics are widely used as insulation and jacketing for electric wire and cable because of their electrical properties and their resistance to oil and water. Thin films are used in geomembranes.

Vinyl chlorides also are used for floor coverings in the form of tile and sheet because of their abrasion resistance and relatively low water absorption. The rigid materials are used for tubing, pipe, and many other applications where their resistance to corrosion and action of many chemicals, especially acids and alkalies,
recommends them.

They are attacked by a variety of organic solvents, however. Like all thermoplastics, they soften at elevated temperatures.

Vinylidene Chloride. This material is highly resistant to most inorganic chemicals and to organic solvents generally. It is impervious to water on prolonged immersion, and its films are highly resistant to moisture-vapor transmission. It can be sterilized, if not under load, in boiling water. It is used as pipe for transporting chemicals and geomembranes

Nylon. Molded nylon is used in increasing quantities for impact and high resistance to abrasion. It is employed in small gears, cams, and other machine parts, because even when unlubricated they are highly resistant to wear.

Its chemical resistance, except to phenols and mineral acids, is excellent. Extruded nylon is coated onto electric wire, cable, and rope for abrasion resistance. Applications like hammerheads indicate its impact resistance.

Polystyrene. This is one of the lightest of the presently available commercial plastics. It is relatively inexpensive, easily molded, has good dimensional stability, and good stability at low temperatures; it is brilliantly clear when transparent and has an infinite range of colors.

Water absorption is negligible even after long immersion. Electrical characteristics are excellent. It is resistant to most corrosive chemicals, such as acids, and to a variety of organic solvents, although it is attacked by others.

Polystyrenes as a class are considerably more brittle and less extensible than many other thermoplastic materials, but these properties are markedly improved in copolymers. Under some conditions, they have a tendency to develop fine cracks, known as craze marks, on exposure, particularly outdoors. This is true of many other thermoplastics, especially when highly stressed. It is widely used in synthetic rubbers.

THERMOSETTING PLASTICS BASICS AND TUTORIALS

THERMOSETTING PLASTICS BASIC INFORMATION
What Are Thermosetting Plastics?


Phenol Formaldehyde. These materials provide the greatest variety of thermosetting molded plastic articles. They are used for chemical, decorative, electrical, mechanical, and thermal applications of all kinds.

Hard and rigid, they change slightly, if at all, on aging indoors but, on outdoor exposure, lose their bright surface gloss. However, the outdoor-exposure characteristics of the more durable formulations are otherwise generally good.

Phenol formaldehydes have good electrical properties, do not burn readily, and do not support combustion. They are strong, light in weight, and generally pleasant to the eye and touch, although light colors by and large are not obtainable because of the fairly dark-brown basic color of the resin. They have low water absorption and good resistance to attack by most commonly found chemicals.

Epoxy and Polyester Casting Resins. These are used for a large variety of purposes. For example, electronic parts with delicate components are sometimes cast completely in these materials to give them complete and continuous support, and resistance to thermal and mechanical shock.

Some varieties must be cured at elevated temperatures; others can be formulated to be cured at room temperatures. One of the outstanding attributes of the epoxies is their excellent adhesion to a variety of materials, including such metals as copper, brass, steel, and aluminum.

Polyester Molding Materials. When compounded with fibers, particularly glass fibers, or with various mineral fillers, including clay, the polyesters can be formulated into putties or premixes that are easily compression- or transfer-molded into parts having high impact resistance. Polyesters are often used in geotextiles.

Melamine Formaldehyde. These materials are unaffected by common organic solvents, greases, and oils, as well as most weak acids and alkalies. Their water absorption is low. They are insensitive to heat and are highly flame-resistant, depending on the filler.

Electrical properties are particularly good, especially resistance to arcing. Unfilled materials are highly translucent and have unlimited color possibilities. Principal fillers are alpha cellulose for general-purpose compounding; minerals to improve electrical properties, particularly at elevated temperatures; chopped fabric to afford high shock resistance and flexural strength; and cellulose, mainly for electrical purposes.

Cellulose Acetate Butyrate. The butyrate copolymer is inherently softer and more flexible than cellulose acetate and consequently requires less plasticizer to achieve a given degree of softness and flexibility. It is made in the form of clear transparent sheet and film, or in the form of molding powders, which can be molded by standard injection-molding procedures into a wide variety of applications.

Like the other cellulosics, this material is inherently tough and has good impact resistance. It has infinite colorability, like the other cellulosics. Cellulose acetate butyrate tubing is used for such applications as irrigation and gas lines.

Cellulose Nitrate. One of the toughest of the plastics, cellulose nitrate is widely used for tool handles and similar applications requiring high impact strength. The high flammability requires great caution, particularly in the form of film. Most commercial photographic film is cellulose nitrate as opposed to safety film.

Polyurethane. This plastic is used in several ways in building. As thermal insulation, it is used in the form of foam, either prefoamed or foamed in place. The latter is particularly useful in irregular spaces. When blown with fluorocarbons, the foam has an exceptionally low K-factor and is, therefore, widely used in thin-walled refrigerators.

Other uses include field-applied or baked-on clear or colored coatings and finishes for floors, walls, furniture, and casework generally. The rubbery form is employed for sprayed or troweled-on roofing, and for gaskets and calking compounds.

Urea Formaldehyde. Like the melamines, these offer unlimited translucent to opaque color possibilities, light-fastness, good mechanical and electrical properties, and resistance to organic solvents as well as mild acids and alkalies.

Although there is no swelling or change in appearance, the water absorption of urea formaldehyde is relatively high, and it is therefore not recommended for applications involving long exposure to water. Occasional exposure to water is without deleterious effect. Strength properties are good, although special shock-resistant grades are not made.

Silicones. Unlike other plastics, silicones are based on silicon rather than carbon. As a consequence, their inertness and durability under a wide variety of conditions are outstanding. As compared with the phenolics, their mechanical properties are poor, and consequently glass fibers are added.

Molding is more difficult than with other thermosetting materials. Unlike most other resins, they may be used in continuous operations at 400 F; they have very low water absorption; their dielectric properties are excellent over an extremely wide variety of chemical attack; and under outdoor conditions their durability is particularly outstanding.

In liquid solutions, silicones are used to impart moisture resistance to masonry walls and to fabrics. They also form the basis for a variety of paints and other coatings capable of maintaining flexibility and inertness to attack at high temperatures in the presence of ultraviolet sunlight and ozone. Silicone rubbers maintain their flexibility at much lower temperatures than other rubbers.
electrical engineering tutorials