WALL BEARING FRAMING BASICS AND TUTORIALS

WALL BEARING FRAMING METHODS BASIC INFORMATION
What Is Wall Bearing Framing Method?


Probably the oldest and commonest type of framing, wall-bearing (not to be confused with bearing-wall construction), occurs whenever a wall of a building, interior or exterior, is used to support ends of main structural elements carrying roof or floor loads.

The walls must be strong enough to carry the reaction from the supported members and thick enough to ensure stability against any horizontal forces that may be imposed. Such construction often is limited to relatively low structures, because load-bearing walls become massive in tall structures. Nevertheless, a wall bearing system may be advantageous for tall buildings when designed with reinforcing steel.

A common application of wall-bearing construction may be found in many single-family homes. A steel beam, usually 8 or 10 in deep, is used to carry the interior walls and floor loads across the basement with no intermediate supports, the ends of the beam being supported on the foundation walls. The relatively shallow
beam depth affords maximum headroom for the span. In some cases, the spans may be so large that an intermediate support becomes necessary to minimize deflection.

Usually a steel pipe column serves this purpose. Another example of wall-bearing framing is the member used to support masonry over windows, doors, and other openings in a wall. Such members, called lintels, may be a steel angle section (commonly used for brick walls in residences) or, on longer spans and for heavier walls, a fabricated assembly.

A variety of frequently used types is shown in Fig. 7.6. In types b, c, and e, a continuous plate is used to close the bottom, or soffit, of the lintel, and to join the load-carrying beams and channels into a single shipping unit.
The gap between the toes of the channel flanges in type d may be covered by a door frame or window trim, to be installed later. Pipe and bolt separators are used to hold the two channels together to form a single member for handling.

Bearing Plates. Because of low allowable pressures on masonry, bearing plates (sometimes called masonry plates) are usually required under the ends of all beams that rest on masonry walls, as illustrated in Fig. 7.7.
Even when the pressure on the wall under a member is such that an area no greater than the contact portion
of the member itself is required, wall plates are sometimes prescribed, if the member is of such weight that it must be set by the steel erector. The plates, shipped loose and in advance of steel erection, are then set by the mason to provide a satisfactory seat at the proper elevation.

Anchors. The beams are usually anchored to the masonry. Government anchors, as illustrated in Fig. 7.7, are generally preferred.

Nonresidential Uses. Another common application for the wall-bearing system is in one-story commercial and light industrial-type construction. The masonry side walls support the roof system, which may be rolled beams, open-web joists, or light trusses.

Clear spans of moderate size are usually economical, but for longer spans (probably over 40 ft), wall thickness and size of buttresses (pilasters) must be built to certain specified minimum proportions commensurate with the span—a requirement of building codes to assure stability. Therefore, the economical aspect should be carefully investigated.

It may cost less to introduce steel columns and keep wall size to the minimum permissable. On the other hand, it may be feasible to reduce the span by introducing intermediate columns and still retain the wall-bearing system for the outer end reactions.

Planning for Erection. One disadvantage of wall-bearing construction needs emphasizing: Before steel can be set by the iron workers, the masonry must be built up to the proper elevation to receive it. When these elevations vary, as is the case at the end of a pitched or arched roof, then it may be necessary to proceed in alternate stages, progress of erection being interrupted by the work that must be performed by the masons, and vice versa.

The necessary timing to avoid delays is seldom obtained. A few columns or an additional rigid frame at the end of a building may cost less than using trades to fit an intermittent and expensive schedule. Remember, too, that labor-union regulations may prevent the trades from handling any material other than that belonging to their own craft.

An economical rule may well be: Lay out the work so that the erector and iron workers can place and connect all the steel work in one continuous operation.

UNFINISHED BOLTS IN STRUCTURES BASICS AND TUTORIALS

UNFINISHED BOLTS TREATMENT IN STRUCTURES BASIC INFORMATION
What Are Unfinished Bolts?


Known in construction circles by several names—ordinary, common, machine, or rough—unfinished bolts are characterized chiefly by the rough appearance of the shank. They are covered by ASTM A307. They fit into holes 1⁄16 in larger in diameter than the nominal bolt diameter.

Unfinished bolts have relatively low load-carrying capacity. This results from the possibility that threads might lie in shear planes. Thus, it is unnecessary to extend the bolt body by use of washers.

One advantage of unfinished bolts is the ease of making a connection; only a wrench is required. On large jobs, however, erectors find they can tighten bolts more economically with a pneumatic-powered impact wrench. Power tightening generally yields greater uniformity of tension in the bolts and makes for a better balanced connection.

While some old building codes restrict unfinished bolts to minor applications, such as small, secondary (or intermediate) beams in floor panels and in certain parts of one-story, shed-type buildings, the AISC specifications for structural steel buildings, with a basis of many years of experience, permit A307 bolts for main connections on structures of substantial size.

For example, these bolts may be used for beam and girder connections to columns in buildings up to 125 ft in height. There is an economic relation between the strength of a fastener and that of the base material.

So while A307 may be economical for connecting steel with a 36- ksi yield point, this type of bolt may not be economical with 50-ksi yield-point steel. The number of fasteners to develop the latter becomes excessive and perhaps impractical due to size of detail material.

A307 bolts should always be considered for use, even in an otherwise all-welded building, for minimum-type connections, such as for purlins, girts, and struts.

Locking Devices for Bolts. Unfinished bolts (ASTM A307) and interference body-type bolts usually come with American Standard threads and nuts. Properly tightened, connections with these bolts give satisfactory service under static loads.

But when the connections are subjected to vibration or heavy dynamic loads, a locking device is desirable to prevent the nut from loosening. Locking devices may be classified according to the method employed: special threads, special nuts, special washers, and what may be described as field methods.

Instead of conventional threads, bolt may be supplied with a patented self-locking thread called Dardelet. Sometimes, locking features are built into the nuts. Patented devices, the Automatic-Nut, Union-Nut, and Pal-Nut, are among the common ones.

Washers may be split rings or specially touched. Field methods generally used include checking, or distorting, the threads by jamming them with a chisel or locking by tack welding the nuts.
electrical engineering tutorials