STRUCTURAL STEEL STRESS AND STRAIN BEHAVIOR
Stress and Strain Behavior Of Structural Steel Tutorials
Structural steel is an important construction material. It possesses attributes such as strength, stiffness, toughness, and ductility that are very desirable in modern constructions.
Strength is the ability of a material to resist stresses. It is measured in terms of the material’s yield strength, Fy, and ultimate or tensile strength, Fu.
For steel, the ranges of Fy and Fu ordinarily used in constructions are 36 to 50 ksi (248 to 345 MPa) and 58 to 70 ksi (400 to 483 MPa), respectively, although higher strength steels are becoming more common. Stiffness is the ability of a material to resist deformation. It is measured as the slope of the material’s stress-strain curve.
With reference to Figure 3.1 in which uniaxial engineering stress-strain curves obtained from coupon tests for various grades of steels are shown, it is seen that the modulus of elasticity, E, does not vary appreciably for the different steel grades.
Therefore, a value of 29,000 ksi (200 GPa) is often used for design. Toughness is the ability of a material to absorb energy before failure. It is measured as the area under the material’s stress-strain curve.
As shown in Figure 3.1, most (especially the lower grade) steels possess high toughness which is suitable for both static and seismic applications. Ductility is the ability of a material to undergo large inelastic, or plastic, deformation before failure.
It is measured in terms of percent elongation or percent reduction in area of the specimen tested in uniaxial tension. For steel, percent elongation ranges from around 10 to 40 for a 2-in. (5-cm) gage length specimen.
Ductility generally decreases with increasing steel strength. Ductility is a very important attribute of steel.
The ability of structural steel to deform considerably before failure by fracture allows an indeterminate structure to undergo stress redistribution. Ductility also enhances the energy absorption characteristic of the structure, which is extremely important in seismic design.
CIVIL ENGINEERING DESIGN | CIVIL ENGINEERING DEGREE RESOURCES | CIVIL ENGINEERING DESIGN | CIVIL ENGINEERING TUTORIALS | STRUCTURAL DESIGN | CONSTRUCTION | TUTORIALS ON STRUCTURAL ENGINEERING | CONCRETE DESIGN | TIMBER DESIGN | STEEL DESIGN | BRIDGE ENGINEERING | ENVIRONMENTAL | HYDRAULICS | MATERIALS
Thursday, January 19, 2012
Tuesday, January 17, 2012
EFFECTS OF CHEMISTRY ON STEEL PROPERTIES TUTORIALS
CHEMISTRY EFFECT ON STEEL PROPERTIES
What Are The Chemical Effects On Steel?
Chemical composition determines many characteristics of steels important in construction applications. Some of the chemicals present in commercial steels are a consequence of the steel making process. Other chemicals may be added deliberately by the producers to achieve specific objectives. Specifications therefore usually require producers to report the chemical composition of the steels.
During the pouring of a heat of steel, producers take samples of the molten steel for chemical analysis. These heat analyses are usually supplemented by product analyses taken from drillings or millings of blooms, billets, or finished products. ASTM specifications contain maximum and minimum limits on chemicals reported in the heat and product analyses, which may differ slightly.
Principal effects of the elements more commonly found in carbon and low-alloy steels are discussed below. Bear in mind, however, that the effects of two or more of these chemicals when used in combination may differ from those when each alone is present. Note also that variations in chemical composition to obtain specific combinations of properties in a steel usually increase cost, because it becomes more expensive to make, roll, and fabricate.
Carbon is the principal strengthening element in carbon and low-alloy steels. In general, each 0.01% increase in carbon content increases the yield point about 0.5 ksi. This, however, is accompanied by increase in hardness and reduction in ductility, notch toughness, and weldability, raising of the transition temperatures, and greater susceptibility to aging.
Hence limits on carbon content of structural steels are desirable. Generally, the maximum permitted in structural steels is 0.30% or less, depending on the other chemicals present and the weldability and notch toughness desired.
Aluminum, when added to silicon-killed steel, lowers the transition temperature and increases notch toughness. If sufficient aluminum is used, up to about 0.20%, it reduces the transition temperature even when silicon is not present.
However, the larger additions of aluminum make it difficult to obtain desired finishes on rolled plate. Drastic deoxidation of molten steels with aluminum or aluminum and titanium, in either the steel making furnace or the ladle, can prevent the spontaneous increase in hardness at room temperature called aging. Also, aluminum restricts grain growth during heat treatment and promotes surface hardness by nitriding.
Boron in small quantities increases hardenability of steels. It is used for this purpose in quenched and tempered low-carbon constructional alloy steels. However, more than 0.0005 to 0.004% boron produces no further increase in hardenability. Also, a trace of boron increases strength of low-carbon, plain molybdenum (0.40%) steel.
Chromium improves strength, hardenability, abrasion resistance, and resistance to atmospheric corrosion. However, it reduces weldability. With small amounts of chromium, low-alloy steels have higher creep strength than carbon steels and are used where higher strength is needed for elevated-temperature service. Also chromium is an important constituent of stainless steels.
What Are The Chemical Effects On Steel?
Chemical composition determines many characteristics of steels important in construction applications. Some of the chemicals present in commercial steels are a consequence of the steel making process. Other chemicals may be added deliberately by the producers to achieve specific objectives. Specifications therefore usually require producers to report the chemical composition of the steels.
During the pouring of a heat of steel, producers take samples of the molten steel for chemical analysis. These heat analyses are usually supplemented by product analyses taken from drillings or millings of blooms, billets, or finished products. ASTM specifications contain maximum and minimum limits on chemicals reported in the heat and product analyses, which may differ slightly.
Principal effects of the elements more commonly found in carbon and low-alloy steels are discussed below. Bear in mind, however, that the effects of two or more of these chemicals when used in combination may differ from those when each alone is present. Note also that variations in chemical composition to obtain specific combinations of properties in a steel usually increase cost, because it becomes more expensive to make, roll, and fabricate.
Carbon is the principal strengthening element in carbon and low-alloy steels. In general, each 0.01% increase in carbon content increases the yield point about 0.5 ksi. This, however, is accompanied by increase in hardness and reduction in ductility, notch toughness, and weldability, raising of the transition temperatures, and greater susceptibility to aging.
Hence limits on carbon content of structural steels are desirable. Generally, the maximum permitted in structural steels is 0.30% or less, depending on the other chemicals present and the weldability and notch toughness desired.
Aluminum, when added to silicon-killed steel, lowers the transition temperature and increases notch toughness. If sufficient aluminum is used, up to about 0.20%, it reduces the transition temperature even when silicon is not present.
However, the larger additions of aluminum make it difficult to obtain desired finishes on rolled plate. Drastic deoxidation of molten steels with aluminum or aluminum and titanium, in either the steel making furnace or the ladle, can prevent the spontaneous increase in hardness at room temperature called aging. Also, aluminum restricts grain growth during heat treatment and promotes surface hardness by nitriding.
Boron in small quantities increases hardenability of steels. It is used for this purpose in quenched and tempered low-carbon constructional alloy steels. However, more than 0.0005 to 0.004% boron produces no further increase in hardenability. Also, a trace of boron increases strength of low-carbon, plain molybdenum (0.40%) steel.
Chromium improves strength, hardenability, abrasion resistance, and resistance to atmospheric corrosion. However, it reduces weldability. With small amounts of chromium, low-alloy steels have higher creep strength than carbon steels and are used where higher strength is needed for elevated-temperature service. Also chromium is an important constituent of stainless steels.
Subscribe to:
Comments (Atom)
CONSTRUCTION MANAGEMENT - Case study: Stoke-on-Trent Schools, UK
In 1997 many of the schools in Stoke-on-Trent were in a dilapidated state and not fit for modern teaching and learning practice. The school...
