RELATIVE COST OF STRUCTURAL STEEL BASIC INFORMATION
How To Compute Relative Cost Of Structural Steel?
Because of the many strength levels and grades now available, designers usually must investigate several steels to determine the most economical one for each application. As a guide, relative material costs of several structural steels used as tension members, beams, and columns are discussed below.
The comparisons are based on cost of steel to fabricators (steel producer’s price) because, in most applications, cost of a steel design is closely related to material costs. However, the total fabricated and erected cost of the structure should be considered in a final cost analysis.
Thus the relationships shown should be considered as only a general guide.
Tension Members. Assume that two tension members of different-strength steels have the same length. Then, their material-cost ratio C2 /C1 is
C2/C1 = A2P2/A1P1
where A1 and A2 are the cross-sectional areas and p1 and p2 are the material prices per unit weight. If the members are designed to carry the same load at a stress that is a fixed percentage of the yield point, the cross-sectional areas are inversely proportional to the yield stresses. Therefore, their relative material cost can be expressed as
C2/C1 = Fy1p2/Fy2p1 (1.2)
where Fy1 and Fy2 are the yield stresses of the two steels. The ratio p2 /p1 is the relative price factor. Values of this factor for several steels are given in Table 1.4, with A36 steel as the base.
The table indicates that the relative price factor is always less than the corresponding yield-stress ratio. Thus the relative cost of tension members calculated from Eq. (1.2) favors the use of high-strength steels.
How To Compute Relative Cost Of Structural Steel?
Because of the many strength levels and grades now available, designers usually must investigate several steels to determine the most economical one for each application. As a guide, relative material costs of several structural steels used as tension members, beams, and columns are discussed below.
The comparisons are based on cost of steel to fabricators (steel producer’s price) because, in most applications, cost of a steel design is closely related to material costs. However, the total fabricated and erected cost of the structure should be considered in a final cost analysis.
Thus the relationships shown should be considered as only a general guide.
Tension Members. Assume that two tension members of different-strength steels have the same length. Then, their material-cost ratio C2 /C1 is
C2/C1 = A2P2/A1P1
where A1 and A2 are the cross-sectional areas and p1 and p2 are the material prices per unit weight. If the members are designed to carry the same load at a stress that is a fixed percentage of the yield point, the cross-sectional areas are inversely proportional to the yield stresses. Therefore, their relative material cost can be expressed as
C2/C1 = Fy1p2/Fy2p1 (1.2)
where Fy1 and Fy2 are the yield stresses of the two steels. The ratio p2 /p1 is the relative price factor. Values of this factor for several steels are given in Table 1.4, with A36 steel as the base.
The table indicates that the relative price factor is always less than the corresponding yield-stress ratio. Thus the relative cost of tension members calculated from Eq. (1.2) favors the use of high-strength steels.
