HEAT TREATMENT OF STEEL BASICS AND CIVIL ENGINEERING TUTORIALS

DIFFERENT HEAT TREATMENT OF STEEL BASIC INFORMATION
What Are The Different Heat Treatment Of Steel?


Heat Treatment of Steel
Properties of steel can be altered by applying a variety of heat treatments. For example, steel can be hardened or softened by using heat treatment; the response of steel to heat treatment depends upon its alloy composition.

Common heat treatments employed for steel include annealing, normalizing, hardening, and tempering. The basic process is to heat the steel to a specific temperature, hold the temperature for a specified period of\ time, then cool the material at a specified rate.

Annealing
The objectives of annealing are to refine the grain, soften the steel, remove internal stresses, remove gases, increase ductility and toughness, and change electrical and magnetic properties. Four types of annealing can be performed, depending on the desired results of the heat treatment:

Full annealing requires heating the steel to about 50°C above the austenitic temperature line and holding the temperature until all the steel transforms into either austenite or austenite–cementite, depending on the carbon content.

The steel is then cooled at a rate of about 20°C per hour in a furnace to a temperature of about 680°C, followed by natural convection cooling to room temperature. Due to the slow cooling rate, the grain structure is a coarse pearlite with ferrite or cementite, depending on the carbon content.

The slow cooling rate ensures uniform properties of the treated steel. The steel is soft and ductile. Process annealing is used to treat work-hardened parts made with low carbon steel (i.e., less than 0.25 percent carbon). The material is heated to about 700°C and held long enough to allow recrystallization of the ferrite phase.

By keeping the temperature below 727°C, there is not a phase shift between ferrite and austenite, as occurs during full annealing. Hence, the only change that occurs is refinement of the size, shape, and distribution of the grain structure.

Stress relief annealing is used to reduce residual stresses in cast, welded, and cold-worked parts and cold formed parts. The material is heated to 600 to 650°C, held at temperature for about one hour, and then slowly cooled in still air.

Spheroidization is an annealing process used to improve the ability of high carbon (i.e., more than 0.6 percent carbon) steel to be machined or cold worked. It also improves abrasion resistance. The cementite is formed into globules (spheroids) dispersed throughout the ferrite matrix.

3.3.2 Normalizing
Normalizing is similar to annealing, with a slight difference in the temperature and
the rate of cooling. Steel is normalized by heating to about 60°C (110°F) above the
austenite line and then cooling under natural convection. The material is then
air cooled. Normalizing produces a uniform, fine-grained microstructure. However,
since the rate of cooling is faster than that used for full annealing, shapes with varying thicknesses results in the normalized parts having less uniformity than could
be achieved with annealing. Since structural plate has a uniform thickness, normalizing
is an effective process and results in high fracture toughness of the material.

Hardening
Steel is hardened by heating it to a temperature above the transformation range and holding it until austenite is formed. The steel is then quenched (cooled rapidly) by plunging it into, or spraying it with, water, brine, or oil. The rapid cooling “locks” the iron into a BCC structure, martensite, rather than allowing the transformation to the ferrite FCC structure.

Martensite has a very hard and brittle structure. Since the cooling occurs more rapidly at the surface of the material being hardened, the surface of the material is harder and more brittle than the interior of the element, creating nonhomogeneous characteristics.

Due to the rapid cooling, hardening puts the steel in a state of strain. This strain sometimes causes steel pieces with sharp angles or grooves to crack immediately after hardening. Thus, hardening must be followed by tempering.

Tempering
The predominance of martensite in quench-hardened steel results in an undesirable brittleness. Tempering is performed to improve ductility and toughness. Martensite is a somewhat unstable structure.

Heating causes carbon atoms to diffuse from martensite to produce a carbide precipitate and formation of ferrite and cementite. After quenching, the steel is cooled to about 40°C then reheated by immersion in either oil or nitrate salts. The steel is maintained at the elevated temperature for about two hours and then cooled in still air.

Example of Heat Treatment
In the quest to produce high-strength low-alloy steels economically, the industry has developed specifications for several new steel products, such as A913. This steel is available with yield stresses ranging from 50,000 to 75,000 psi.

The superior properties of A913 steel are obtained by a quench self-tempering process. Following the last hot rolling pass for shaping, for which the temperature is typically 850°C (1600°F), an intense water-cooling spray is applied to the surface of the beam to quench (rapidly cool) the skin.

Cooling is interrupted before the core on the material is affected. The outer layers are then tempered as the internal heat of the beam flows to the surface. After the short cooling phase, the self-tempering temperature is 600°C (1100°F).

TYPES OF CONSTRUCTION COMPANY FOR CIVIL ENGINEERING PROJECTS BASICS AND TUTORIALS

CONSTRUCTION COMPANY TYPES FOR CIVIL ENGINEERING PROJECTS 
What Are The Types Of Civil Engineering Project Construction Companies?


The principles of construction project management, as outlined in this article, apply equally to those engaged in subcontracting and those engaged in general contracting.

Small Renovation Contractors. These companies generally work on jobs requiring small amounts of capital and the type of work that does not require much estimating or a large construction organization. They usually perform home alterations or small commercial and office work.

Many small renovation contractors have their offices in their homes and perform the ‘‘paper work’’ at night or on weekends after working with the tools of their trade during the day. The ability to grow from this type of contractor to a general contractor depends mainly on the training and business ability of the individual.

Generally, if one is intelligent enough to be a good small renovation contractor, that person may be expected to eventually move into the field of larger work.

General Contractors. These companies often are experts in either new buildings or alteration work. Many building contractors subcontract a major portion of their work, while alteration contractors generally perform many of the trades with their own forces.

Some general contractors specialize in public works. Others deal mainly with private and commercial work. Although a crossing of the lines by many general contractors is common, it is often in one or another of these fields that many general contractors find their niche.

Owner-Builder. The company that acts as an owner-builder is not a contractor in the strict sense of the word. Such a company builds buildings only for its own ownership, either to sell on completion, or to rent and operate. Examples of this type of company include giants in the industry, and many of them are listed on the various stock exchanges.

Many owner-builders, on occasion, act in the capacity of general contractor or as construction manager (see below) as a sideline to their main business of building for their own account.

Real Estate Developer. This is a type of owner-builder who, in addition to building for personal ownership, may also build to sell before or after completion of the project. One- and two-family home builders are included in this category.

Professional Construction Manager. A professional construction manager may be defined as a company, an individual, or a group of individuals who perform the functions required in building a project as the agent of an owner, but do so as if the job was being performed with the owner’s own employees.

The construction management organization usually supplies all the personnel required. Such personnel include construction superintendents, expediters, project managers, and accounting personnel.

The manager sublets the various portions of the construction work in the name of the owner and does all the necessary office administration, field supervision, requisitioning, paying of subcontractors, payroll reports, and other work on the owner’s behalf, for a fee.

Generally, construction management is performed without any risk of capital to the construction manager. All the financial obligations are contracted in the name of the owner by the construction manager.

Program Manager. A general contractor or construction manager may expand services by undertaking program management.

Such services will include: demolition of existing buildings on the site; devising and providing financial analyses of new buildings or a program to replace what was there, or for the acquisition of a new site; hiring an architect and other design professionals on behalf of the owner and supervising their services; performing preconstruction services during the planning stage; advertising for and receiving bids from contractors for the new work; consulting on financing and methods of payment for the work; supervising the contractor; obtaining tenants, whether commercial, residential, or industrial for the completed project; helping to administer and manage the complete project.

Obviously, the comprehensive services outlined above will require that the general contractor or construction manager augment his staff with trained architects, accountants, real estate professionals, and management and leasing experts.

Package (Turnkey) Builders. Such companies take on a contract for both design and construction of a building. Often these services, in addition, include acquisition of land and financing of the project. Firms that engage in package building usually are able to show prospective clients prototypes of similar buildings completed by them for previous owners.

From an inspection of the prototype and discussion of possible variations or features to be included, an approximate idea is gained by the prospective owner of the cost and function of the proposed building.

Package builders often employ their own staff of architects and engineers, as well as construction personnel. Some package builders subcontract the design portion to independent architects or engineers.

It is important to note that, when a package builder undertakes design as part of the order for a design-construction contract, the builder must possess the necessary professional license for engineering or architecture, which is required in most states for those performing that function.

Sponsor-Builder. In the field of government-aided or subsidized building, particularly in the field of housing, a sponsor-builder may be given the responsibility for planning design, construction, rental, management, and maintenance. A sponsor guides a project through the government processing and design stages.

The sponsor employs attorneys to deal with the various government agencies, financial institutions, and real estate consultants, to provide the know-how in land acquisition and appraisal. On signing the contract for construction of the building, the sponsor assumes the builder’s role, and in this sense functions very much as an owner builder would in building for its own account.
electrical engineering tutorials