PILE DRIVING PRE-BORING ACTIVITIES BASIC INFORMATION AND TUTORIALS


Pre-boring is a commonly referenced method for easing the passage of some driven piles into the ground. However, its use can also be misunderstood or misguided. It is not a satisfactory way of overcoming significant obstructions to enable piles to be driven because that which impedes the driven pile will also in general impede progress of the pre-boring tool.

Pre-boring in sand and gravel presents a problem because of the inherent instability of the soil through which the pre-bore passes. When such soil is dense, pre-bores may stand open temporarily because of arching and the influence of temporary pore water suction.

However, as soon as a piling tube or pile enters the bore and the hammer begins striking, the upper granular soil collapses into the lower part of the bore. The lower section of the bore will possibly not collapse in this circumstance at the initial driving strokes because the soil is relatively more dense and the hammer influence more remote.

The result is frequently that because of re-compacted debris in the lower bore, piles will not drive back to the same depth as originally bored. Only if the bore is temporarily cased to prevent collapse, and if the casing is of large enough diameter to allow access for the final pile, can a satisfactory load bearing unit be inserted, albeit with loss of potential friction resulting from loss of displacement effects and the need for in-filling around the pile.

As an alternative to trying to form an open hole in sand soils, the pre-boring tool is sometimes used simply to stir up the ground, leaving disturbed soil in position. This may be sufficient to deal with dense soil near ground level.

However, if deep bores are attempted after this manner, again when a piling tube or pile is entered and driving begins, the loosened material is compacted down into the lower part of the bore and becomes virtually indistinguishable from the original natural soil. Piles will frequently not drive back to the depth of the pre-bore or may behave inconsistently under applied load.

It is therefore not generally satisfactory to use deep pre-bore methods in sands, for example, for the purpose of ensuring that piles reach a deeper stratum such as rock unless special temporary casing methods are adopted.

Pre-boring sockets into rock or very hard soils for the supposed purpose of enhancing end bearing or reaching strong soil, where there are overlying fill, sand or clay layers, is also generally futile. For the same reasons as stated above, it will be found that without guaranteed bore stability and measures to prevent soil from collapsing into the socket, a satisfactory load bearing and consistent unit cannot be formed because of debris falling before the pile arrives.

Pre-bores are satisfactory only under specific circumstances:
1 To loosen dense upper crust soils and enable long piles to be driven without breakage. Long piles struck at the head are really slender columns and so the possibilities of buckling failure can be very real.

2 To make an open hole in stiff clays or similar cohesive soils into which a pile is pre-entered. The purpose in this instance is to avoid or diminish soil heave. If using the method for the purpose of eliminating ground heave, it is generally legitimate to choose the area of the bore so that the pile cross-sectional area is just slightly larger.

Jobs with pre-boring are frequently associated with claims and cost overruns, partly because it is difficult to synchronize the activities of boring and driving machines with consequent delay, and partly because, where the motivation is to achieve stringent ‘sets’ this may be a major source of damage to equipment.  

PRE CAST TEES AND SLABS BASIC INFORMATION AND TUTORIALS


Precast slabs are available in hollow, cored, and solid varieties for use on floors, walls, and roofs. For short spans, various types of panel and channel slabs with reinforcing bars are available in both concrete and gypsum. Longer spans and heavy loads most commonly involve cored units with prestressed wire.

The solid panel and channel slabs are available in heavyweight and lightweight aggregates. The thicknesses and widths available vary considerably, but the maximum span is generally limited to about 10 feet.

Some slabs are available tongue-and-grooved and some with metal-edged tongue and- groove. These types of slabs use reinforcing bars or reinforcing mesh for added tension strengths.

These lightweight, easy-to-handle nail, drill, and saw pieces are easily installed on the job over the supporting members. A clip or other special fastener should be used in placing the slabs.

Cored units with prestressed wire are used on roof spans up to about 44 feet. Thicknesses available range from 4 to 16 inches with various widths available, 40 and 48 inches being the most common.

Each manufacturer must be contacted to determine the structural limitations of each product. The units generally have high fire resistance ratings and are available with an acoustical finish. Some types are available with exposed aggregate finishes for walls.

Specifications.
The type of material used and the manufacturer specified are the first items to be checked. The materials used to manufacture the plank, type and size of reinforcing, and required fire rating and finish must be checked. The estimator should also note who cuts the required holes in the planks and who caulks the joints, and the type of caulking.
electrical engineering tutorials