WHAT IS THE DIFFERENCE BETWEEN AN ENGINEER AND AN ARCHITECT?


The major distinctions between architects and engineers run along generalist and specialist lines. The generalists are ultimately responsible for the overall planning.

It is for this reason that an architect is generally employed as the prime professional by a client. On some special projects, such as dams, power plants, wastewater treatment, and research or industrial installations, where one of the engineering specialties becomes the predominant feature, a client may select an engineering professional or an E/A firm to assume responsibility for design and construction and taken on the lead role.

On certain projects, it is the unique and imaginative contribution of the engineer that may make the most significant total impact on the architectural design.

The overall strength of a dynamic, exposed structure, the sophistication of complex lighting systems, or the quiet efficiency of a well-designed mechanical system may prove to be the major source of the client’s pride in a facility. In any circumstance, the responsibilities of the professional engineer for competence and contribution are just as important to the project as those of the
architect.

Engineers, for example, play a major role in intelligent building system design, which involves mechanical-electrical systems. However, a building’s intelligence is also measured by the way it responds to people, both on the inside and outside.

The systems of the building must meet the functional needs of the occupants as well as respect the human response to temperature, humidity, airflow, noise, light, and air quality. To achieve the multifaceted goals, an intelligent building requires an intelligent design process with respect to design and system formulation as well as efficient and coordinated execution of design and technical documentation within the management structure.

An intelligent building begins with intelligent architecture—the shape, the building enclosure, and the way the building appears and functions. Optimal building solutions can be achieved through a design process that explores and compares varying architectural and engineering options in concert.

Sophisticated visualization and analytical tools using three-dimensional computer modeling techniques permit architects and engineers to rapidly evaluate numerous alternatives. Options can be carefully studied both visually and from a performance standpoint, identifying energy and life-cycle cost impact. This enables visualization and technical evaluation of multiple schemes early in the design phase, setting the basis for an intelligent building.

In all cases, the architect’s or engineer’s legal responsibilities to the client remain firm. The prime professional is fully responsible for the services delivered. The consultants, in turn, are responsible to the architect or engineer with whom they contract.

Following this principle, the architect or engineer is responsible to clients for performance of each consultant. Consequently, it is wise for architects and engineers to evaluate their expertise in supervising others before retaining consultants in other areas of responsibility.

LUBRICATING OIL AGAINST CORROSION BASIC INFORMATION


Lubricants are not generally regarded as being corrosive, and in order to appreciate how corrosion can occur in lubricant systems it is necessary to understand something of the nature of lubricants. Once, lubricants were almost exclusively animal or vegetable oils or fats, but modern requirements in the way of volume and special properties have made petroleum the main source of supply. In volume, lubricants now represent about 2% of all petroleum products; in value, considerably more.

There are many hundreds of different varieties of lubricants, many of them tailored to meet particular requirements. Lubricating greases are solid or semi-solid lubricants made by thickening lubricating oils with soaps, clays, silica gel or other thickening agents. Synthetic lubricants, which will operate over a very wide range of temperature, have been developed mainly for aviation gas-turbine engines.

These are generally carboxylic esters and are very expensive products. The main function of most lubricants is to reduce friction and wear between moving surfaces and to abstract heat. They also have to remove debris from the contact area, e.g. combustion products in an engine cylinder, swarf in metal-cutting operations.


Mineral lubricants may be distillates or residues derived from the vacuum distillation of a primary distillate with a boiling point range above that of gas oi1’*2*T3.h ey are mixtures of hydrocarbons containing more than about 20 carbon atoms per molecule, and range from thin, easily flowing ‘spindle’ oils to thick ‘cylinder’oils.

For hydrocarbons having the same number of carbon atoms per molecule, the higher the proportion of carbon to hydrogen, the more viscous the oil and the lower the viscosity index.


Distillate lubricating oils can be conveniently divided into three groups -low viscosity index oils (LVI oils), medium viscosity index oils (MVI oils) and high viscosity index oils (HVI oils). LVI oils are made from naphthenic distillates, with low wax contents so that costly dewaxing is not required.

MVI oils are produced from both naphthenic and paraffinic distillates; the paraffinic distillates have to be dewaxed. HVI oils are prepared by the solvent extraction and dewaxing of paraffnic distillates. Solvent extraction is a physical process which removes the undesirable constituents, thereby improving viscosity index and the oxidation and colour stability.

White oils are obtained by the more drastic refining of low viscosity lubricating oil distillates to remove unsaturated compounds and constituents that impart colour, odour and taste. They are usually solvent extracted and then repeatedly treated with strong sulphuric acid or oleum and alkali, and finally ‘clay’-treated to remove surface-active compounds.

Acid and clay treating is expensive and is being superseded by hydrofinishing, a catalytic hydrogenation
treatment. The residues from the vacuum distillation can also be refined to provide very viscous lubricants. The residues from paraffinic base oils are generally solvent extracted and dewaxed. The main use of these products (bright stocks) is as blending components for heavy lubricants.

Thus residues from naphthenic base oils, which are also used as blending components for heavy lubricants, are normally not extracted. The performance characteristics of a lubricating oil depend on its origin and on the refining processes employed, and in order to ensure consistent properties these are varied as little as possible. Some aero-engine builders insist on a complete re-evaluation of a lubricant, costing many thousands of pounds, whenever there is a change of source (crude) or refining process.


electrical engineering tutorials